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Abstract

We model the effects of Schumpeterian ‘selection pressures’ – in
particular Apartheid and the neoliberal ‘market economy’ – on orga-
nizational cognition in minority communities, given the special role of
culture in human biology. Our focus is on the dual-function social net-
works by which culture is imposed and maintained on individuals and
by which immediate patterns of opportunity and threat are recognized
and given response. A mathematical model based on recent advances
in complexity theory displays a joint cross-scale linkage of social, in-
dividual central nervous system, and immune cognition with external
selection pressure through mixed and synergistic punctuated ‘learning
plateaus.’ This provides a natural mechanism for addressing the social
determinants of health at the individual level. The implications of the
model, particularly the predictions of synergistic punctuation, appear
to be empirically testable.
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Introduction

Lack of detailed mechanism haunts current discussions concerning the
social determinants of health. While Wilkinson (1996) and his colleagues
present a compelling epidemiological picture regarding some effects of stress
and inequality on individual health – a picture sufficient in many respects to
begin the design of corrective public policy – their arguments would be sig-
nificantly strengthened and their policy recommendations greatly sharpened
by a more detailed picture of the mechanisms by which social structure and
process affects individual health and illness.

Our earlier empirical work and in this direction (e.g. R Wallace and D
Wallace, 1977, 1997; D Wallace and R Wallace, 1998, 2000) suggests that
deliberate policy, path dependence and the enduring burdens of history, ma-
terial deprivation, and the relentless spread of effects by contagious process
upwards along the social heirarchy (i.e. the US system of Apartheid cannot
contain its effects), play far more central roles than is comfortably recognized
by current US academic research, whose political economy is not particularly
consonant with the needs of public policy. To paraphrase the opinions of
more than one high level US public health official, “Every decade or so the
academics come down to Washington en masse and tell us that poverty is
bad for health. We already know this”.

Under the US system, at least, changing policy depends on making the
case that ‘bad things’ are not confined to marginalized populations – the ba-
sis for necessary large-scale public relations efforts to create consensus across
traditional political divisions – and providing a roadmap which can be used to
create a synergistically effective ‘more-bang-for-the-buck’ intervention strat-
egy. Although the public relations effort is beyond us here, we can attempt
a more thorough treatment of the mechanisms underlying the social deter-
minants of health. The tools for this involve recent advances in complexity
theory, given the special role which culture plays in human biology. Here we
significantly expand a recent theoretical study in that direction (R Wallace,
RG Wallace, D Wallace and M Fullilove, 2001).

“Culture,” the evolutionary anthropologist Robert Boyd has asserted,
“is as much a part of human biology as the enamel on our teeth” (Boyd,
1995). Indeed, the current dual vision of human biology among evolutionary
anthropologists is summarized by Durham (1991) as follows:
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“...[G]enes and culture constitute two distinct but interacting
systems of inheritance within human populations... [and] infor-
mation of both kinds has influence, actual or potential, over ...
behaviors [which] creates a real and unambiguous symmetry be-
tween genes and phenotypes on the one hand, and culture and
phenotypes on the other...

[G]enes and culture are best represented as two parallel lines
or ‘tracks’ of hereditary influence on phenotypes...”

Elsewhere (Wallace et al., 2001) we have adapted this perspective to
address culture as implemented by an immediate embedding ‘sociocultural
network’ whose cognitive functions interact with individual central nervous
system (CNS) and immune cognition, in the sense of IR Cohen (2000), to
produce a system in which social factors are intimately related to individual
health and illness.

Recently D Wallace and R Wallace (2000) published work which sug-
gested evolutionary selection pressures can determine social network struc-
ture: public policies of ‘planned shrinkage’ directed against minority voting
blocks in New York City triggered widespread, catastrophic, contagious hous-
ing destruction which shredded organizational structures capable of pulling
the minority vote in primary elections, particularly in the city’s Bronx sec-
tion (e.g. R Wallace and D Wallace, 1977; D Wallace and R Wallace, 1998).
With regard to the Bronx, Wallace and Wallace (2000) write

“...[T]he 1970’s ‘planned shrinkage’ catastrophe in the Bronx
was so extensive and extreme that only highly resilient social
subsystems have survived this draconian selection... Evolutionary
process relies on the interaction between variation and selection...
[and a] key concept in [its] study is ‘path dependence’, the idea
that the future development of a system is determined not only by
its present macroscopic state... but by the way in which that state
was reached, in other words the revolutionary idea for Americans
that history, indeed, counts. Community structure, from this
viewpoint, is seen as largely determined by prior adaptations to
past selection pressures, so that possible adaptations to present
pressures are strongly constrained by, and will be built upon, the
complex structures, often nested hierarchies, resulting form the
past. Future changes may be seen as taking place on the ‘surface’
of the nested legacy of the past.
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From this viewpoint the ‘fittest’ social structures remaining
in the Bronx were those which persisted in the face of a degree of
social disruption whose only analogs are massive natural disaster
and the aftermath of modern war.”

Here we will attempt to extend our earlier work on the effects of system-
atic social perturbation on individual health and illness, as modulated by
the embedding sociocultural network, to include the fact that such networks
may be simultaneously involved in both cognitive and evolutionary process.
The picture which emerges will show unexpectedly punctuated mechanisms
by which the impact ‘selection pressures’ can be expressed at the level of
individual mental disorder and behavioral or immune dysfunction, through
the intermediate mechanism of sociocultural cognition.

Some preliminary theoretical development is first necessary, introducing
formalism from information theory and related fields, and expressing cog-
nitive pattern recognition-and-response as a ‘language’ constrained by the
basic limit theorems of information theory. A synergistic intertwining of
punctuated learning plateaus in organizational cognition and of punctuation
in response to selection pressure will emerge in a ‘natural’ manner.

Ergodic information sources, the Shannon-McMillan Theorem,
and its generalizations

Suppose we have an ordered set of random variables, Xk, at ‘times’ k =
1, 2, ... – which we call X – that emits sequences taken from some fixed
alphabet of possible outcomes. Thus an output sequence of length n, xn,
termed a path, will have the form

xn = (α0, α1, ..., αn−1)

where αk is the value at step k of the stochastic variate Xk,

Xk = αk.

A particular sequence xn will have the probability

P (X0 = α0, X1 = α1, ..., Xn−1 = αn−1),
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(1)

with associated conditional probabilities

P (Xn = αn|Xn−1 = αn−1, ..., X0 = α0).

(2)

Thus substrings of xn are not, in general, stochastically independent.
That is, there may be powerful serial correlations along the xn. We call X
an information source, and are particularly interested in sources for which
the long run frequencies of strings converge stochastically to their time-
independent probabilities, generalizing the law of large numbers. These we
call ergodic (Ash, 1990, Cover and Thomas, 1991; Khinchine, 1957). If the
probabilities of strings do not change in time, the source is called memory-
less. We shall be interested in sources which can be parametized and that
are, with respect to that parameter, piecewise memoryless, i.e. probabilities
do not change markedly within a ‘piece,’ but may do so between pieces. This
allows us to apply the simplest results from information theory, and to use
renormalization methods to examine transitions between ‘pieces.’ Learning
plateaus represent regions where, with respect to the parameter, the system
is, to first approximation, memoryless in this sense. In what follows we use
the term ‘ergodic,’ to mean ‘piecewise memoryless ergodic.’

For any ergodic information source it is possible to divide all possible
sequences of output, in the limit of large n, into two sets, S1 and S2, having,
respectively, very high and very low probabilities of occurrence. Sequences
in S1 we call meaningful.

The content of information theory’s Shannon-McMillan Theorem is twofold:
First, if there are N(n) meaningful sequences of length n, where N(n) �

than the number of all possible sequences of length n, then, for each ergodic
information source X, there is a unique, path-independent number H[X]
such that
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lim
n→∞

log[N(n)]

n
= H[X].

(3)

See Ash (1990), Cover and Thomas (1991) or Khinchine (1957) for details.
Thus, for large n, the probability of any meaningful path of length n � 1

– independent of path – is approximately

P (xn ∈ S1) ∝ exp(−nH[X]) ∝ 1/N(n).

(3)

This is the asymptotic equipartition property and the Shannon-McMillan
Theorem is often called the Asymptotic Equipartition Theorem (AEPT).

H[X] is the splitting criterion between the two sets S1 and S2, and the
second part of the Shannon-McMillan Theorem involves its calculation. This
requires introduction of some nomenclature.

Suppose we have stochastic variables X and Y which take the values xj

and yk with probability distributions

P (X = xj) = Pj

P (Y = yk) = Pk

Let the joint and conditional probability distributions of X and Y be
given, respectively, as

P (X = xj, Y = yk) = Pj,k

P (Y = yk|X = xj) = P (yk|xj)
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The Shannon uncertainties of X and of Y are, respectively

H(X) = −
∑
j

Pj log(Pj)

H(Y ) = −
∑
k

Pk log(Pj)

(4)

The joint uncertainty of X and Y is defined as

H(X, Y ) = −
∑
j,k

Pj,k log(Pj,k).

(5)

The conditional uncertainty of Y given X is defined as

H(Y |X) = −
∑
j,k

Pj,k log[P (yk|xj)].

(6)

Note that by expanding P (yk|xj) we obtain

H(X|Y ) = H(X, Y )−H(Y ).

7



The second part of the Shannon-McMillan Theorem states that the – path
independent – splitting criterion, H[X], of the ergodic information source
X, which divides high from low probability paths, is given in terms of the
sequence probabilities of equations (1) and (2) as

H[X] = lim
n→∞

H(Xn|X0, X1, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn)

n + 1
.

(7)

The AEPT is one of the most unexpected and profound results of 20th
Century applied mathematics.

Ash (1990) describes the uncertainty of an ergodic information source as
follows;

“...[W]e may regard a portion of text in a particular language
as being produced by an information source. the probabilities
P [Xn = αn|X0 = α0, ..., Xn−1 = αn−1) may be estimated from the
available data about the language. A large uncertainty means,
by the AEPT, a large number of ‘meaningful’ sequences. Thus
given two languages with uncertainties H1 and H2 respectively, if
H1 > H2, then in the absence of noise it is easier to communicate
in the first language; more can be said in the same amount of time.
On the other hand, it will be easier to reconstruct a scrambled
portion of text in the second language, since fewer of the possible
sequences of length n are meaningful.”

Languages can affect each other, or, equivalently, systems can translate
from one language to another, usually with error. The Rate Distortion The-
orem, which is one generalization of the SMT, describes how this can take
place. As IR Cohen (2001) has put it, in the context of the cognitive immune
system (Cohen, 1992, 2000),
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“An immune response is like a key to a particular lock; each
immune response amounts to a functional image of the stimulus
that elicited the response. Just as a key encodes a functional
image of its lock, an effective [immune] response encodes a func-
tional image of its stimulus; the stimulus and the response fit each
other. The immune system, for example, has to deploy different
types of inflammation to heal a broken bone, repair an infarc-
tion, effect neuroprotection, cure hepatitis, or contain tuberculo-
sis. Each aspect of the response is a functional representation of
the challenge.

Self-organization allows a system to adapt, to update itself in
the image of the world it must respond to... The immune system,
like the brain... aim[s] at representing a part of the world.”

These considerations suggest that the degree of possible back-translation
between the world and its image within a cognitive system represents the
profound and systematic coupling between a biological system and its envi-
ronment, a coupling which may particularly express the way in which the
system has ‘learned’ the environment. We attempt a formal treatment, from
which it will appear that both cognition and response to systematic patterns
of selection pressure are – almost inevitably – highly punctuated by ‘learning
plateaus’ in which the two processes can become inextricably intertwined.

Suppose we have a ergodic information source Y, a generalized language
having grammar and syntax, with a source uncertainty H[Y] that ‘perturbs’
a system of interest. A chain of length n, a path of perturbations, has the
form

yn = y1, ..., yn.

Suppose that chain elicits a corresponding chain of responses from the
system of interest, producing another path bn = (b1, ..., bn), which has some
‘natural’ translation into the language of the perturbations, although not,
generally, in a one-to-one manner. The image is of a continuous analog audio
signal which has been ‘digitized’ into a discrete set of voltage values. Thus,
there may well be several different yn corresponding to a given ‘digitized’ bn.
Consequently, in translating back from the b-language into the y-language,
there will generally be information loss.

Suppose, however, that with each path bn we specify an inverse code
which identifies exactly one path ŷn. We assume further there is a measure
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of distortion which compares the real path yn with the inferred inverse ŷn.
Below we follow the nomenclature of Cover and Thomas (1991).

The Hamming distortion is defined as

d(y, ŷ) = 1, y 6= ŷ

d(y, ŷ) = 0, y = ŷ.

(8)

For continuous variates the Squared error distortion is defined as

d(y, ŷ) = (y − ŷ)2.

(9)

Possibilities abound.
The distortion between paths yn and ŷn is defined as

d(yn, ŷn) = (1/n)
n∑

j=1

d(yj, ŷj)

(10)

We suppose that with each path yn and bn-path translation into the y-
language, denoted ŷn, there are associated individual, joint and conditional
probability distributions p(yn), p(ŷn), p(yn, ŷn) and p(yn|ŷn).
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The average distortion is defined as

D =
∑
yn

p(yn)d(yn, ŷn)

(11)

It is possible, using the distributions given above, to define the informa-
tion transmitted from the incoming Y to the outgoing Ŷ process in the usual
manner, using the appropriate Shannon uncertainties:

I(Y, Ŷ ) ≡ H(Y )−H(Y |Ŷ ) = H(Y ) + H(Ŷ )−H(Y, Ŷ )

(12)

If there is no uncertainty in Y given Ŷ , then no information is lost. In
general, this will not be true.

The information rate distortion function R(D) for a source Y with a
distortion measure d(y, ŷ) is defined as

R(D) = min
p(y|ŷ);

∑
(y,ŷ)

p(y)p(y|ŷ)d(y,ŷ)≤D
I(Y, Ŷ )

(13)

where the minimization is over all conditional distributions p(y|ŷ) for
which the joint distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies the average distor-
tion constraint.
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The Rate Distortion Theorem states that R(D), as we have defined it,
is the maximum achievable rate of information transmission which does not
exceed distortion D. Note that the result is independent of the exact form of
the distortion measure d(y, ŷ).

More to the point, however, is the following: Pairs of sequences (yn, ŷn)
can be defined as distortion typical, that is, for a given average distortion
D, pairs of sequences can be divided into two sets, a high probability one
containing a relatively small number of (matched) pairs with d(yn, ŷn) ≤ D,
and a low probability one containing most pairs. As n →∞ the smaller set
approaches unit probability, and we have for those pairs the condition

p(ŷn) ≥ p(ŷn|yn) exp[−nI(Y, Ŷ )].

(14)

Thus, roughly speaking, I(Y, Ŷ ) embodies the splitting criterion between
high and low probability pairs of paths. These pairs are, again, the input
‘training’ paths and corresponding output path.

Note that, in the absence of a distortion measure, this result result re-
mains true for two interacting information sources, the principal content of
the joint asymptotic equipartition theorem, (Cover and Thomas, 1991, The-
orem 8.6.1).

Thus the imposition of a distortion measure results in a limitation in the
number of possible jointly typical sequences to those satisfying the distortion
criterion.

For the theory we will explore later – of pairwise interacting information
sources – I(Y, Ŷ ) (or I(Y1, Y2) without the distortion restriction), can play
the role of H in the critical development of the next section.

The RDT is a generalization of the Shannon-McMillan Theorem which
examines the interaction of two information sources under the constraint of
a fixed average distortion. For our development we will require one more
iteration, studying the interaction of three ‘languages’ under particular con-
ditions, and require a similar generalization of the SMT in terms of the
splitting criterion for triplets as opposed to single or double stranded pat-
terns. The tool for this is at the core of what is termed network information
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theory (Cover and Thomas, 1991, Ch. 14, Theorem 14.2.3). Suppose we
have (piecewise memoryless) ergodic information sources Y1, Y2 and Y3. We
assume Y3 constitutes a critical embedding context for Y1 and Y2 so that,
given three sequences of length n, the probability of a particular triplet of
sequences is determined by conditional probabilities with respect to Y3:

P (Y1 = y1, Y2 = y2, Y3 = y3) =

Πn
i=1p(y1i|y3i)p(y2i|y3i)p(y3i).

(15)

That is, Y1 and Y2 are, in some measure, driven by their interaction with
Y3

Then, in analogy with the previous two cases, triplets of sequences can
be divided by a splitting criterion into two sets, having high and low proba-
bilities respectively. For large n the number of triplet sequences in the high
probability set will be determined by the relation (Cover and Thomas, 1991,
p. 387)

N(n) ∝ exp[nI(Y1; Y2|Y3)],

(16)

where splitting criterion is given by

I(Y1; Y2|Y3) ≡

H(Y3) + H(Y1|Y3) + H(Y2|Y3)−H(Y1, Y2, Y3)
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Below we examine phase transitions in the splitting criteria H, which
we will generalize to both I(Y1, Y2) and I(Y1, Y2|Y3). The former will pro-
duce punctuated cognitive and non-cognitive learning plateaus, while the
latter characterizes the interaction between selection pressure and sociocul-
tural cognition.

Phase transition and coevolutionary condensation

The essential homology relating information theory to statistical mechan-
ics and nonlinear dynamics is twofold (R Wallace and RG Wallace, 1998,
1999, 2001; Rojdestevnski and Cottam, 2000):

(1) A ‘linguistic’ equipartition of probable paths consistent with the
Shannon-McMillan and Rate Distortion Theorems serves as the formal con-
nection with nonlinear mechanics and fluctuation theory – a matter we will
not fully explore here, and

(2) A correspondence between information source uncertainty and statis-
tical mechanical free energy density, rather than entropy. See R Wallace and
RG Wallace (1998, 2000) for a fuller discussion of the formal justification for
this assumption, described by Bennett (1988) as follows:

“...[T]he value of a message is the amount of mathematical or
other work plausibly done by the originator, which the receiver
is saved from having to repeat.”

This is a central insight.
The definition of the free energy density for a parametized physical system

is

F (K1, ...Km) = lim
V→∞

log[Z(K1, .., Km)]

V

(17)

where the Kj are parameters, V is the system volume and Z is the ‘par-
tition function’ defined from the energy function, the Hamiltonian, of the
system.
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For an ergodic information source the equivalent relation associates source
uncertainty with the number of ‘meaningful’ sequences N(n) of length n, in
the limit

H[X] = lim
n→∞

log[N(n)]

n
.

We will parametize the information source to obtain the crucial expression
on which our version of information dynamics will be constructed;

H[K1, ..., Km,X] = lim
n→∞

log[N(K1, ..., Km)]

n
.

(18)

The essential point is that while information systems do not have ‘Hamil-
tonians’ allowing definition of a ‘partition function’ and a free energy density,
they may have a source uncertainty obeying a limiting relation like that of
free energy density. Importing ‘renormalization’ symmetry gives phase tran-
sitions at critical points (or surfaces), and importing a Legendre transform
in a ‘natural’ manner gives dynamic behavior far from criticality. Only the
first will be needed to solve the problems we wish to address here.

As neural networks demonstrate so well, it is possible to build larger
pattern recognition systems from assemblages of smaller ones. We abstract
this process in terms of a generalized linked array of subcomponents which
‘talk’ to each other in two different ways. These we take to be ‘strong’ and
‘weak’ ties between subassemblies. ‘Strong’ ties are, following arguments
from sociology (Granovetter, 1973), those which permit disjoint partition
of the system into equivalence classes. Thus the strong ties are associated
with some reflexive, symmetric, and transitive relation between components.
‘Weak’ ties do not permit such disjoint partition. In a physical system these
might be viewed, respectively, as ‘local’ and ‘mean field’ coupling.

We fix the magnitude of strong ties, but vary the index of weak ties
between components, which we call P , taking K = 1/P .

We assume the array, sensory activity and ongoing activity depend on
three parameters, two explicit and one implicit. The explicit are K as above
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and an ‘external field strength’ analog J , which gives a ‘direction’ to the
system. We may, in the limit, set J = 0.

The implicit parameter, which we call r, is an inherent generalized ‘length’
on which the phenomenon, including J and K, are defined. That is, we can
write J and K as functions of averages of the parameter r, which may be
quite complex, having nothing at all to do with conventional ideas of space,
for example degree of niche partitioning in ecosystems.

Rather than specify complicated patterns of individual dependence or
interaction for sensory activity, ongoing activity and array components, we
follow the direction suggested above and instead work entirely within the
domain of the uncertainty of the ergodic information source dual to the
large-scale pattern recognition process, which we write as

H[K, J,X]

Imposition of invariance of H under a renormalization transform in the
implicit parameter r leads to expectation of both a critical point in K, which
we call KC , reflecting a phase transition to or from collective behavior across
the entire array, and of power laws for system behavior near KC . Addition
of other parameters to the system, e.g. some Q, results in a ‘critical line’ or
surface KC(Q).

Let κ = (KC −K)/KC and take χ as the ‘correlation length’ defining the
average domain in r-space for which the dual information source is primarily
dominated by ‘strong’ ties. We begin by averaging across r-space in terms
of ‘clumps’ of length R, defining JR, KR as J, K for R = 1. Then, following
Wilson’s (1971) physical analog, we choose the renormalization relations as

H[KR, JR,X] = RDH[K, J,X]

χ(KR, JR) =
χ(K, J)

R

(19)
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where D is a non-negative real constant, possibly reflecting fractal net-
work structure. The first of these equations states that ‘processing capacity,’
as indexed by the source uncertainty of the system which represents the ‘rich-
ness’ of the inherent language, grows as RD, while the second just states that
the correlation length simply scales as R.

Other, very subtle, symmetry relations – not necessarily based on ele-
mentary physical analogs – may well be possible. For example McCauley,
(1993, p.168) describes the counterintuitive renormalization relations needed
to understand phase transition in simple ‘chaotic’ systems.

For K near KC , if J → 0, a simple series expansion and some clever
algebra (e.g. Wilson, 1971; Binney et al., 1995; R Wallace and RG Wallace,
1998) gives

H = H0κ
sD

χ = χ0κ
−s

(20)

where s is a positive constant. Some rearrangement produces, near KC ,

H ∝ 1

χD

(21)

This suggests that the ‘richness’ of the pattern recognition language is
inversely related to the domain dominated by disjointly partitioning strong
ties near criticality. As the nondisjunctive weak ties coupling declines, the
efficiency of the coupled system as an information channel declines precipi-
tously near the transition point: see (e.g.) Ash (1990) for discussion of the
relation between channel capacity and information source uncertainty.
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Further from the critical point matters are more complicated.
The essential insight is that regardless of the particular renormalization

symmetries involved, sudden critical point transition is possible in the oppo-
site direction for this model, that is, from a number of independent, isolated
and fragmented pattern recognition systems operating individually and more
or less at random, into a single large, interlocked, coherent pattern recogni-
tion system, once the parameter K, the inverse strength of weak ties, falls
below threshold, or, conversely, once the strength of weak ties parameter
P = 1/K becomes large enough.

Thus, increasing weak ties between them can bind several different pat-
tern recognition or other ‘language’ processes into a single, embedding hier-
archical metalanguage which contains the different languages as linked sub-
dialects.

This heuristic insight can be made exact using a rate distortion argument:
Suppose that two ergodic information sources Y and B begin to interact,

to ‘talk’ to each other, i.e. to influence each other in some way so that it
is possible, for example, to look at the output of B – strings b – and infer
something about the behavior of Y from it – strings y. We suppose it possible
to define a retranslation from the B-language into the Y-language through
a deterministic code book, and call Ŷ the translated information source, as
mirrored by B.

Take some distortion measure d comparing paths y to paths ŷ, defin-
ing d(y, ŷ). We invoke the Rate Distortion Theorem’s mutual information
I(Y, Ŷ ), which is a splitting criterion between high and low probability pairs
of paths. Impose, now, a parametization by an inverse coupling strength K,
and a renormalization symmetry representing the global structure of the sys-
tem coupling. This may be much different from the renormalization behavior
of the individual components. If K < KC , where KC is a critical point (or
surface), the two information sources will be closely coupled enough to be
characterized as condensed.

We will make much of this below; cultural and genetic heritages are gen-
eralized languages, as are neural, immune, and sociocultural pattern recog-
nition.

Pattern recognition as language

The task of this section is to express cognitive pattern recognition-and-
response in terms of a ergodic information source constrained by the AEPT.
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Pattern recognition, as we will characterize it here, proceeds by convoluting
an incoming ‘sensory’ signal with an internal ‘ongoing activity’ and, at some
point, triggering an appropriate action based on a decision that the pattern
of the sensory input requires a response. For the purposes of this work we do
not need to model in any particular detail the manner in which the pattern
recognition system is ‘trained,’ and thus adopt a ‘weak’ model which may
have considerable generality, regardless of the system’s particular learning
paradigm, which can be more formally described using the RDT.

We will, fulfilling Atlan and Cohen’s (1998) criterion of meaning-from-
response, define a language’s contextual meaning entirely in terms of system
output.

The model is as follows: A pattern of sensory input is convoluted with a
pattern of internal ‘ongoing activity’ to create a path

x = (a0, a1, ..., an, ...).

This is fed into a (highly nonlinear) ‘decision oscillator’ which generates
an output h(x) that is an element of one of two (presumably) disjoint sets
B0 and B1.

We take

B0 = b0, ..., bk

B1 = bk+1, ..., bm.

Thus we permit a graded response, supposing that if

h(x) ∈ B0

the pattern is not recognized, and

h(x) ∈ B1

that the pattern is recognized and some action bj, k + 1 ≤ j ≤ m takes
place.

We are interested in paths which trigger pattern recognition exactly once.
That is, given a fixed initial state a0 such that h(a0) ∈ B0, we examine all
possible subsequent paths x beginning with a0 and leading exactly once to the
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event h(x) ∈ B1. Thus h(a0, a1, ...aj) ∈ B0 for all j < m but h(a0, ..., am) ∈
B1.

For each positive integer n, let N(n) be the number of paths of length
n which begin with some particular a0 having h(a0) ∈ B0, and lead to the
condition h(x) ∈ B1. We shall call such paths ‘meaningful’ and assume N(n)
to be considerably less than the number of all possible paths of length n –
pattern recognition is comparatively rare – and in particular assume that the
finite limit

H = lim
n→∞

log[N(n)]

n

exists and is independent of the path x. We will – not surprisingly – call
such a pattern recognition process ergodic.

We may thus define a ergodic information source X associated with
stochastic variates Xj having joint and conditional probabilities P (a0, ...an)
and

P (an|a0, ..., an−1) such that appropriate joint and conditional Shannon
uncertainties satisfy the relations

H[X] = lim
n→∞

log[N(n)]

n

= lim
n→∞

H(Xn|X0, ..., Xn−1)

= lim
n→∞

H(X0, ...Xn)

n + 1

We say this ergodic information source is dual to the pattern recognition
process.

Different ‘languages’ will, of course, be defined by different divisions of
the total universe of possible responses into different pairs of sets B0 and B1,
or perhaps even by requiring more than one response in B1 along a path.
Like the use of different distortion measures in the RDT, however, it seems
obvious that the underlying dynamics will all be qualitatively similar.

Meaningful paths – creating an inherent grammar and syntax – are de-
fined entirely in terms of system response, as Atlan (1983, 1987, 1997) and
Atlan and Cohen (1998) propose, quoting Atlan (1987)
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“...[T]he perception of a pattern does not result from a two-
step process with first perception of a pattern of signals and then
processing by application of a rule of representation. Rather, a
given pattern in the environment is perceived at the time when
signals are received by a kind of resonance between a given struc-
ture of the environment – not necessarily obvious to the eyes of
an observer – and an internal structure of the cognitive system.
It is the latter which defines a possible functional meaning – for
the system itself – of the environmental structure.”

Elsewhere (R Wallace, 2000b) we have termed this process an ‘information
resonance.’

Although we do not pursue the matter here, the ‘space’ of the aj can be
partitioned into disjoint equivalence classes according to whether states can
be connected by meaningful paths. This is analogous to a partition into do-
mains of attraction for a nonlinear or chaotic system, and imposes a ‘natural’
algebraic structure which can, among other things, enable multitasking (R
Wallace, 2000b).

We can apply this formalism to the stochastic neuron: A series of inputs
yj

i , i = 1...m from m nearby neurons at time j is convoluted with ‘weights’
wj

i , i = 1...m, using an inner product

aj = yj ·wj =
m∑

i=1

yj
i w

j
i

(22)

in the context of a ‘transfer function’ f(yj ·wj) such that the probability
of the neuron firing and having a discrete output zj = 1 is P (zj = 1) =
f(yj · wj). Thus the probability that the neuron does not fire at time j is
1− f(yj ·wj).

In the terminology of this section the m values yj
i constitute ‘sensory

activity’ and the m weights wj
i the ‘ongoing activity’ at time j, with aj =

yj ·wj and x = a0, a1, ...an, ...

21



A little more work, described below, leads to a fairly standard neural
network model in which the network is trained by appropriately varying the
w through least squares or other error minimization feedback. This can be
shown to, essentially, replicate rate distortion arguments, as we can use the
error definition to define a distortion function d(y, ŷ) which measures the
difference between the training pattern y and the network output ŷ as a
function of, for example, the inverse number of training cycles, K. As we
will discuss in some detail, ‘learning plateau’ behavior follows as a phase
transition on the parameter K in the mutual information I(Y, Ŷ ).

Park et al. (2000) treat the stochastic neural network in terms of a space
of related probability density functions [p(x,y;w)|w ∈ Rm], where x is the
input, y the output and w the parameter vector. The goal of learning is
to find an optimum w∗ which maximizes the log likelihood function. They
define a loss function of learning as

L(x,y;w) ≡ − log p(x,y;w),

and one can take as a learning paradigm the gradient relation

wt+1 = wt − ηt∂L(x,y;w)/∂w,

where ηt is a learning rate.
Park et al. (2000) attack this optimization problem by recognizing that

the space of p(x,y;w) is Riemannian with a metric given by the Fisher
information matrix

G(w) =
∫ ∫

∂ log p/∂w[∂ log p/∂w]T p(x,y;w)dydx

where T is the transpose operation. A Fisher-efficient on-line estimator
is then obtained by using the ‘natural’ gradient algorithm

wt+1 = wt − ηtG
−1∂L(x,y;w)/∂w.

Again, through the synergistic family of probability distributions p(x,y;w),
this can be viewed as a special case – a ‘representation’, to use physics jargon
– of the general ‘convolution argument’ given above.

Again, it seems that a rate distortion argument between training language
and network response language will nonetheless produce learning plateaus,
even in this rather elegant special case.
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Our scientific leap of faith – the foundation of the mathematical model-
ing exercise – is to claim that a sociocultural network’s pattern recognition
behavior, like that of other pattern recognition systems, can also be repre-
sented by the language arguments given above, and is thus dual to a ergodic
information source, a context-defining language in Atlan and Cohen’s (1998)
sense, having a grammar and syntax such that meaning is explicitly defined
in terms of system response.

Sociogeographic or sociocultural networks – social networks embedded
place and embodying culture – serve a number of functions, including acting
as the local tools for teaching cultural norms and processes to individuals.
Thus, for the purposes of this work, a person’s social network – family and
friends, workgroup, church, etc. – becomes the immediate agency of cultural
dynamics, and provides the foundation for the brain/culture ‘condensation’
R Wallace and M Fullilove (1999) postulate.

Sociocultural networks serve also, however, as instruments for collective
decision-making, a cognitive phenomenon. Such networks serve as hosts to
a political, in the large sense, process by which a community recognizes and
responds to patterns of threat and opportunity. To treat pattern recognition
on sociocultural networks we impose a version of the structure and general
formalism relating pattern recognition to a dual information source:

We envision problem recognition by a local sociocultural network as fol-
lows: A ‘real problem,’ in some sense, becomes convoluted with a com-
munity’s internal sociocultural ‘ongoing activity’ to create the path of a
‘perceived problem’ at times 0, 1, ..., producing a path of the usual form
x = a0, a1, ..., an, .... That serially correlated path is then subject to a deci-
sion process across the sociocultural network, designated h(x) which produces
output in two sets B0 and B1, as before. The problem is officially recognized
and resources committed to if and only if h(x) ∈ B1, a rare event made
even more rare if resources must then be diverted from previously recognized
problems.

For the purposes of this work, then, we will view ‘culture’ as, in fact,
a sociocultural cognitive process which can entrain individual cognition, a
matter on which there is considerable research (e.g. Arendt, 1963; Richerson
and Boyd, 1998).

Our next task is to apply phase transition dynamics to ergodic informa-
tion sources dual to a pattern recognition language, using techniques of the
sections above. Similar considerations will apply to ‘non-cognitive’ interac-
tion between structured selection pressures and the affected system.
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Learning plateaus in generalized cognitive condensations

We suppose a cognitive system – more generally a linked, hierarchically
structured, and broadly coevolutionary condensation of several such systems
– is exposed to a structured pattern of sensory activity – the training pat-
tern – to which it must learn an appropriate matching response. From that
response we can infer, in a direct manner, something of the form of the ex-
citory sensory activity. We suppose the training pattern to have sufficient
grammar and syntax so as to itself constitute a ergodic information source Y .
The output of the cognitive system, B, is deterministically backtranslated
into the ‘language’ of Y , and we call that translation Ŷ . The rate distor-
tion behavior relating Y and Ŷ , is, according to the RDT, determined by
the mutual information I(Y, Ŷ ). We take the index of coupling between the
sensory input and the cognitive system to be the number of training cycles
– an exposure measure – having an inverse K, and write

I(Y, Ŷ ) = I[K]

(23)

I[K] defines the splitting criterion between high and low probability pairs
of training and response paths for a specified average distortion D, and is
analogous to the parametized information source uncertainty upon which we
imposed renormalization symmetry to obtain phase transition.

We thus interpret the sudden changes in the measured average distortion
D ≡ ∑

p(y)d(y, ŷ) which determines ‘mean square error’ between training
pattern and output pattern, e.g. the ending of a learning plateau, as repre-
senting onset of a phase transition in I[K] at some critical KC , consonant
with our earlier developments.

Note that I[K] constitutes an interaction between the cognitive system
and the impinging sensory activity, so that its properties may be quite dif-
ferent from those of the cognitive condensation itself.

From this viewpoint learning plateaus are an inherently ‘natural’ phase
transition behavior of pattern recognition systems. While one may perhaps,
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in the sense of Park et al. (2000), find more efficient gradient learning algo-
rithms, our development suggests learning plateaus will be both ubiquitous
and highly characteristic of a cognitive system. Indeed, it seems likely that
proper analysis of learning plateaus will give deep insight into the structures
underlying that system.

This is not a new thought: Mathematical learning models of varying
complexity have been under constant development since the late 1940’s (Luce,
1997), and learning plateau behavior has always been a focus of such studies.

The particular contribution of our perspective to this debate is that
the distinct coevolutionary condensation of immune, CNS, and local socio-
cultural network cognition which distinguishes human biology must respond
as a composite in a coherent, unitary and coupled manner to sensory input.
Thus the ‘learning curves’ of the immune system, the CNS and the embed-
ding sociocultural network are inevitably coupled and must reflect each other.
Such reflection or interaction will, of necessity, be complicated.

The canonical example would be a schoolchild with asthma living in a
disintegrating or dysfunctional inner-city community.

We are suggesting that detailed empirical examination of the ‘learning
curves’ of that child’s immune system, school performance, and the ability of
the child’s immediate embedding sociocultural network to address problems,
will form a unitary and synergistic whole.

Our analysis, however, has a particular implication. Learned cultural
behavior – sociocultural cognition – is, from our viewpoint, a nested hierarchy
of phase transition learning plateaus which carries within it the history of
an individual’s embedding socioculture. Through the cognitive condensation
which distinguishes human biology, that punctuated history becomes part
of individual cognitive and immune function. Simply removing ‘constraints’
which have deformed individual and collective past is unlikely to have the
desired impact: one never, really, forgets how to ride a bicycle, and a social
group, in the absence of affirmative redress, will not ‘forget’ the punctuated
adaptations ‘learned’ from experiences of slavery or holocaust. Indeed, at the
individual level, sufficiently traumatic events may become encoded within the
CNS and immune systems to express themselves as Post Traumatic Stress
Disorder.

Non-cognitive ‘learning plateaus’ in evolutionary process

As discussed above, sociocultural networks serve multiple functions and
are not only decision making cognitive structures, but are cultural reposi-
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tories which embody the history of a community. Sociocultural networks,
like human biology in the large, and the immune system in the small, have a
duality in that they make decisions based on recognizing patterns of opportu-
nity and threat by comparison with an internalized picture of the world, and
they respond to selection pressure in the sense that cultural patterns which
cannot adapt to external selection pressures simply do not survive. This is
not learning in the traditional sense of neural networks. Thus the immune
system has both ‘innate’ genetically programmed and ‘learned’ components,
and human biology in the large is a convolution of genetic and cultural sys-
tems of information transmission.

We suggest that sociocultural networks – the instrumentalities of cul-
ture – likewise contain both cognitive and selective systems of information
transmission which are closely intertwined to create a composite whole.

We now examine processes of ‘punctuated evolution’ inherent to evolu-
tionary systems of information transmission.

We suppose a self-reproducing cultural system – more specifically a linked,
and in the large sense coevolutionary, condensation of several such systems
– is exposed to a structured pattern of selective environmental pressures
to which it must adapt if it is to survive. From that adaptive selection
– changes in genotype and phenotype analogs – we can infer, in a direct
manner, something, but not everything, of the form of the structured system
of selection pressures. That is, the culture contains markers of past ‘selection
events’.

We suppose the system of selection pressures to have sufficient internal
structure – grammar and syntax – so as to itself constitute an ergodic infor-
mation source Y whose probabilities are fixed on the timescale of analysis.
The output of that system, B, is backtranslated into the ‘language’ of Y ,
and we call that translation Ŷ . The rate distortion behavior relating Y and
Ŷ , is, according to the RDT, determined by the mutual information I(Y, Ŷ ).

We take there to be a measure of the ‘strength’ of the selection pressure,
P , which we use as an index of coupling with the culture of interest, having
an inverse K = 1/P , and write

I(Y, Ŷ ) = I[K].

(24)
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P might be measured by the rate of attack by predatory colonizers, or
the response to extreme environmental perturbation, and so on.

I[K] thus defines the splitting criterion between high and low probability
pairs of input and output paths for a specified average distortion D, and is
analogous to the parametized information source uncertainty upon which we
imposed renormalization symmetry to obtain phase transition. The result is
robust in the absence of a distortion measure through the joint asymptotic
equipartion theorem, as discussed above.

We thus interpret the sudden changes in the measured average distor-
tion D ≡ ∑

p(y)d(y, ŷ) which determines ‘mean error’ between pressure and
response, i.e. the ending of a ‘learning plateau’, as representing onset of
a phase transition in I[K] at some critical KC , consonant with our earlier
developments. In the absence of a distortion measure, we may still expect
phase transition in I[K], according to the joint AEPT.

Note that I[K] constitutes an interaction between the self-reproducing
system of interest and the impinging ecosystem’s selection pressure, so that
its properties may be quite different from those of the individual or conjoined
subcomponents (R Wallace and RG Wallace, 1998, 1999).

From this viewpoint highly punctuated ‘non-cognitive learning plateaus’
are an inherently ‘natural’ phase transition behavior of evolutionary systems,
even in the absence of a distortion measure. Again, while there may exist,
in the sense of Park et al. (2000), more efficient convergence algorithms, our
development suggests plateaus will be both ubiquitous and highly character-
istic of evolutionary process and path. Indeed, it seems likely that proper
analysis of non-cognitive evolutionary ‘learning’ plateaus – to the extent they
can be observed or reconstructed – will give deep insight into the mechanisms
underlying that system.

Punctuated synergistic interaction between selection pressure and
sociocultural cognition

Selection pressure acting on sociocultural networks can be expected to
affect their cognitive function, their ability to recognize and respond to rela-
tively immediate patterns of threat and opportunity. In fact, those patterns
themselves may in no small part represent factors of that selection pressure,
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conditionally dependent on it. We assume, then, the linkage of three in-
formation sources, two of which are conditionally dependent on and may
indeed be dominated by, a highly structured embedding system of externally
imposed selection pressure which we call Y3. Y2 we will characterize as the
pattern recognition-and-response language of the sociocultural network itself.
In IR Cohen’s (2000) sense, this involves comparison of sensory information
with an internalized picture of the world, and choice of a response from a
repertory of possibilities. Y1 we take to be a more rapidly changing, but
nonetheless structured, pattern of immediate threat-and-opportunity which
demands appropriate response and resource allocation – the ‘training pat-
tern’. We reiterate that Y1 is likely to be conditionally dependent on the
embedding selection pressure, Y3, as is the hierarchically layered history ex-
pressed by Y2.

According to the triplet version of the SMT which we discussed at the
end of the theoretical section above, then, for large n, triplets of paths in
Y1, Y2 and Y3 may be divided into two sets, a smaller ‘meaningful’ one of
high probability – representing those paths consistent with the ‘grammar’
and ‘syntax’ of the interaction between the selection pressure, the cognitive
sociocultural process, and the pattern of immediate ‘sensory challenge’ it
faces – and a very large set of vanishingly small probability. The splitting
criterion is the conditional mutual information:

I(Y1, Y2|Y3).

We parametize this splitting criterion by a variate K representing the
inverse of the strength of the coupling between the system of selection pres-
sure and the linked complex of the sociocultural cognitive process and the
structured system of day-to-day problems it must address. I[K] will, ac-
cording to the ‘phase transition’ developments above, be highly punctuated
by ‘mixed’ plateau behavior representing the synergistic and inextricably in-
tertwined action of both externally imposed selection pressure and internal
sociocultural cognition.

Discussion and conclusions

This result has profound implications for the social determinants of in-
dividual health, since individual CNS and immune cognition are embedded
in, and interact with, sociocultural processes of cognition. Sufficiently dra-
conian external ‘social selection pressures’ – a euphemism for patterns of
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Apartheid and the ‘market’ economy’s systematic deprivation – should be-
come manifest at the behavioral and cellular levels of an individual, through
the intermediate mechanism of the embedding sociocultural network.

This is not a new observation. Franz Fanon (1966) describes what is an
essentially similar phenomenon as follows:

“[Under an Apartheid system the] world [is] divided into com-
partments, a motionless, Manicheistic world... The native is be-
ing hemmed in; apartheid is simply one form of the division into
compartments of the colonial world... his dreams are of action
and aggression... The colonized man will first manifest this ag-
gressiveness which has been deposited in his bones against his
own people. This is the period when the niggers beat each other
up, and the police and magistrates do not know which way to
turn when faced with the astonishing waves of crime...

It would therefore seem that the colonial context is sufficiently
original to give grounds for reinterpretation of the causes of crim-
inality... The [colonized individual], exposed to temptations to
commit murder every day – famine, eviction from his room be-
cause he has not paid the rent, the mother’s dried up breasts,
children like skeletons, the building-yard which has closed down,
the unemployed that hang about the foreman like crows – the na-
tive comes to see his neighbor as a relentless enemy. If he strikes
his bare foot against a big stone in the middle of the path, it is
a native who has placed it there... The [colonized individual’s]
criminality, his impulsivity and the violence of his murders are
therefore not of characterial originality, but the direct product of
the colonial system.”

One of our contributions to this debate is to suggest that patterns of im-
mune function should become entrained into this process as well, and that
colonized man should have a vulnerability to immune stressors – microbiolog-
ical or chemical – which should extend beyond, but may be synergistic with,
the effects of deprivation alone. Differences in immune function heretofore at-
tributed to genetic differences between populations may perhaps reflect this
mechanism, which can have implications for attempts to develop vaccines
against HIV and the like.
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A particular implication of our work is that the ability of local socio-
cultural networks to respond to patterns of opportunity and threat can be-
come closely convoluted with external selection pressures – the impacts of
Apartheid and the depredations of neoliberal ‘market economics’. The math-
ematical model suggests that increases in the selection pressure itself, or in
the coupling between selection pressure and sociocultural cognition, should
manifest themselves through punctuated changes in the ability of sociocul-
tural networks to meet the challenges of changing patterns of threat or op-
portunity.

A more general version of this work would examine how the decision
processes of a ‘firm’, in the very largest sense of institutional economics
(e.g. Hodgson, 1992), becomes convoluted with the Schumpeterian selection
pressures of a ‘market,’ suggesting a similar punctuated degradation or other
changes in group cognition as the firm’s position deteriorates.

These are all matters directly subject to evident empirical test.
Inherent to our approach is recognition of the burdens of history, the

way in which the grammar and syntax of a culturally-determined individual
‘behavioral language,’ and its embodyment at cellular levels, encapsulate ear-
lier adaptations to external selection pressures, even in the sudden absence
of those pressures. Selection pressures themselves may involve deliberate
policy, like the ‘urban renewal’ of the 1950’s, its evolutionary successor the
‘planned shrinkage’ of the 1970’s, or the subsequent explicit counterreforma-
tion against the successes of the Civil Rights Movement: Ethnic cleansing
and pogrom by euphemism.

The mathematical model we have used to examine these matters may
seem excessive to many readers. We can only reply using the words of the
master mathematical ecologist EC Pielou (1977) whose answer to such crit-
icism was that the principal value of mathematical models was to raise re-
search questions for subsequent empirical test. Currently historical, public
policy, and economic justice questions are increasingly excised from academic
discussions of ‘health disparities’ and the ‘social determinants of health’ in
the US, apparently for fear of angering funding agencies or those with power
over academic advancement. Our modeling exercise suggests, among other
things, the extreme degree to which that excision limits the value of such
work in the design of corrective policy.
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